KOTOITE Mineral Details

Complete mineralogical data for KOTOITE. Chemical Formula: Mg3[BO3]2. Crystal System: Orthorhombic. Learn about its geologic occurrence, habit, and identification.

KOTOITE

Mg3[BO3]2

Crystal System

Orthorhombic

Crystal Class

Dipyramidal

Space Group

Pnmn

Point Group

2/m 2/m 2/m

Structure & Data

Crystal Structure

Borate structures are based on constitution of FBB with triangles (Tr) & tetrahedra (Tt); BO3 mono-borates; BO3 w/o add’l anions, 1(Tr); dimers of edge-sharing M[6] octahedra linked into chains // [001] by sharing corners with BO3 triangles; adjoining chains linked by sharing corners with intervening chains of single corner-sharing M[6] octahedra & BO3 grp.1 Similar to that of olivine with almost regular BO2 triangles & MgO6 octahedra.2 Apex of flat Tr of BO3 grp points towards 4th O atom.3

Cell Data

a=5.40Å, b=8.42Å, c=4.50Å, Z=2

Geology & Identification

Geologic Occurrence

Formed in contact zone of Mg-rich skarn borate depositsKOTOITEKOTOITE

Habit

Granular, massive

Twinning

On {101}, polysynthetic

Relationships

RELATIONSHIP TO OTHER MINERALS

Mg analog of jimboite

If you are fascinated by the hidden structures of our planet, you have likely come across KOTOITE. This mineral is a compelling subject for study, offering a unique glimpse into the complex chemistry that shapes the Earth’s crust.Whether you are a student identifying a hand sample, a researcher looking for crystallographic data, or a collector curious about a new find, this guide breaks down everything you need to know about KOTOITE. From its precise chemical formula to the geological environments where it thrives, let’s explore what makes this mineral distinct.

The Chemistry Behind the Crystal

Every mineral tells a story through its chemistry. At its core, KOTOITE is defined by the chemical formula Mg3[BO3]2.This isn’t just a string of letters and numbers; it represents the precise recipe of elements that nature used to build this specimen. This specific chemical composition is what gives the mineral its stability and dictates how it reacts with acids, heat, or other minerals. It is the fundamental “DNA” that geologists use to classify it within the larger mineral kingdom.

Crystallography: Geometry in Nature

One of the most beautiful aspects of mineralogy is the hidden geometry within every stone. KOTOITE crystallizes in the Orthorhombic system.Think of this as the mineral’s architectural blueprint. It dictates the symmetry and the angles at which the crystal faces grow. Digging deeper into its symmetry, it falls under the Dipyramidal.
  • Point Group: 2/m 2/m 2/m
  • Space Group: Pnmn
READ ALSO  METANOVÁČEKITE Mineral Details
Why does this matter? These crystallographic details are like a fingerprint. They influence optical properties—how light travels through the crystal—and physical traits like how it breaks or cleaves when struck.

Internal Structure and Unit Cell

If we could zoom in to the atomic level, we would see the “Unit Cell”—the smallest repeating box of atoms that builds up the entire crystal. For KOTOITE, the dimensions of this microscopic building block are:
a=5.40Å, b=8.42Å, c=4.50Å, Z=2
The internal arrangement of these atoms is described as:Borate structures are based on constitution of FBB with triangles (Tr) & tetrahedra (Tt); BO3 mono-borates; BO3 w/o add’l anions, 1(Tr); dimers of edge-sharing M[6] octahedra linked into chains // [001] by sharing corners with BO3 triangles; adjoining chains linked by sharing corners with intervening chains of single corner-sharing M[6] octahedra & BO3 grp.1 Similar to that of olivine with almost regular BO2 triangles & MgO6 octahedra.2 Apex of flat Tr of BO3 grp points towards 4th O atom.3This internal structure is the invisible framework that supports everything we see on the outside, from the mineral’s density to its hardness.

Physical Appearance (Habit)

When you find KOTOITE in the field, what does it actually look like? A mineral’s “habit” describes its typical shape and growth pattern.
  • Common Habit: Granular, massive
  • Twinning: On {101}, polysynthetic
Twinning is a fascinating phenomenon where two or more crystals grow interlocked in a specific symmetrical pattern. If KOTOITE exhibits twinning, it can be a dead giveaway for identification, distinguishing it from look-alike minerals.
READ ALSO  ASIMOWITE Mineral Details

Where is it Found? (Geologic Occurrence)

Minerals are the products of their environment. They don’t just appear anywhere; they need specific conditions—pressure, temperature, and chemical ingredients—to form.Geologic Occurrence: Formed in contact zone of Mg-rich skarn borate depositsKnowing this context helps geologists reconstruct the history of a rock formation. It tells us whether the rock was born from cooling magma, settled in an ancient ocean, or was transformed by the intense heat and pressure of metamorphism. For more broad geological context, resources like the U.S. Geological Survey (USGS) provide excellent maps and data.

Related Minerals

No mineral exists in a vacuum. KOTOITE is often related to other species, either through similar chemistry or structure.Relationship Data: Mg analog of jimboiteUnderstanding these relationships is key. It helps us see the “family tree” of the mineral world, showing how different elements can substitute for one another to create an entirely new species with similar properties.

Frequently Asked Questions (FAQs)

1. What is the chemical formula of KOTOITE?The standard chemical formula for KOTOITE is Mg3[BO3]2. This defines its elemental composition.2. Which crystal system does KOTOITE belong to?KOTOITE crystallizes in the Orthorhombic system. Its internal symmetry is further classified under the Dipyramidal class.
READ ALSO  ALUMOÅKERMANITE Mineral Details
3. How is KOTOITE typically found in nature?The “habit” or typical appearance of KOTOITE is described as Granular, massive. This refers to the shape the crystals take when they grow without obstruction.4. In what geological environments does KOTOITE form?KOTOITE is typically found in environments described as: Formed in contact zone of Mg-rich skarn borate deposits. This gives clues to the geological history of the area where it is discovered.5. Are there other minerals related to KOTOITE?Yes, it is often associated with or related to other minerals such as: Mg analog of jimboite.

External Resources for Further Study

For those looking to dive deeper into the specific mineralogical data of KOTOITE, we recommend checking high-authority databases:

Final Thoughts

KOTOITE is more than just a name on a list; it is a testament to the orderly and beautiful laws of nature. With a chemical backbone of Mg3[BO3]2 and a structure defined by the Orthorhombic system, it holds a specific and important place in the study of mineralogy.We hope this overview has helped clarify the essential data points for this specimen. Whether for academic study or personal interest, understanding these properties brings us one step closer to understanding the Earth itself.
Scroll to Top