LAURANIITE Mineral Details

Complete mineralogical data for LAURANIITE. Chemical Formula: Cu6Cd2(SO4)2(OH)12(H2O)2·3H2O. Crystal System: Monoclinic. Learn about its geologic occurrence, habit, and identification.

LAURANIITE

Cu6Cd2(SO4)2(OH)12(H2O)2·3H2O

Crystal System

Monoclinic

Crystal Class

Prismatic

Space Group

P21/c

Point Group

2/m

Structure & Data

Crystal Structure

Structure characterized by undulating, brucite-like sheets consisting of 7 CuΦ6 (Φ:O2-, OH-, H2O) octahedra & 2 Cd(OH)6(H2O) polyhedra; sheets are decorated on one side by corner-sharing SO4 tetrahedra; linkages btw sheets are provided by H—bonds.

Cell Data

a=7.320Å, b=25.424Å, c=11.283Å, ß=91.62o, Z=4

Geology & Identification

Geologic Occurrence

LAURANIITELAURANIITE

Habit

As bladed submicro xls.

Twinning

Relationships

RELATIONSHIP TO OTHER MINERALS

New structure type

If you are fascinated by the hidden structures of our planet, you have likely come across LAURANIITE. This mineral is a compelling subject for study, offering a unique glimpse into the complex chemistry that shapes the Earth’s crust.Whether you are a student identifying a hand sample, a researcher looking for crystallographic data, or a collector curious about a new find, this guide breaks down everything you need to know about LAURANIITE. From its precise chemical formula to the geological environments where it thrives, let’s explore what makes this mineral distinct.

The Chemistry Behind the Crystal

Every mineral tells a story through its chemistry. At its core, LAURANIITE is defined by the chemical formula Cu6Cd2(SO4)2(OH)12(H2O)2·3H2O.This isn’t just a string of letters and numbers; it represents the precise recipe of elements that nature used to build this specimen. This specific chemical composition is what gives the mineral its stability and dictates how it reacts with acids, heat, or other minerals. It is the fundamental “DNA” that geologists use to classify it within the larger mineral kingdom.

Crystallography: Geometry in Nature

One of the most beautiful aspects of mineralogy is the hidden geometry within every stone. LAURANIITE crystallizes in the Monoclinic system.Think of this as the mineral’s architectural blueprint. It dictates the symmetry and the angles at which the crystal faces grow. Digging deeper into its symmetry, it falls under the Prismatic.
  • Point Group: 2/m
  • Space Group: P21/c
READ ALSO  WOLFEITE Mineral Details
Why does this matter? These crystallographic details are like a fingerprint. They influence optical properties—how light travels through the crystal—and physical traits like how it breaks or cleaves when struck.

Internal Structure and Unit Cell

If we could zoom in to the atomic level, we would see the “Unit Cell”—the smallest repeating box of atoms that builds up the entire crystal. For LAURANIITE, the dimensions of this microscopic building block are:
a=7.320Å, b=25.424Å, c=11.283Å, ß=91.62o, Z=4
The internal arrangement of these atoms is described as:Structure characterized by undulating, brucite-like sheets consisting of 7 CuΦ6 (Φ:O2-, OH-, H2O) octahedra & 2 Cd(OH)6(H2O) polyhedra; sheets are decorated on one side by corner-sharing SO4 tetrahedra; linkages btw sheets are provided by H—bonds.This internal structure is the invisible framework that supports everything we see on the outside, from the mineral’s density to its hardness.

Physical Appearance (Habit)

When you find LAURANIITE in the field, what does it actually look like? A mineral’s “habit” describes its typical shape and growth pattern.
  • Common Habit: As bladed submicro xls.
  • Twinning: 
Twinning is a fascinating phenomenon where two or more crystals grow interlocked in a specific symmetrical pattern. If LAURANIITE exhibits twinning, it can be a dead giveaway for identification, distinguishing it from look-alike minerals.
READ ALSO  MAGNESIO-HORNBLENDE Mineral Details

Where is it Found? (Geologic Occurrence)

Minerals are the products of their environment. They don’t just appear anywhere; they need specific conditions—pressure, temperature, and chemical ingredients—to form.Geologic Occurrence:Knowing this context helps geologists reconstruct the history of a rock formation. It tells us whether the rock was born from cooling magma, settled in an ancient ocean, or was transformed by the intense heat and pressure of metamorphism. For more broad geological context, resources like the U.S. Geological Survey (USGS) provide excellent maps and data.

Related Minerals

No mineral exists in a vacuum. LAURANIITE is often related to other species, either through similar chemistry or structure.Relationship Data: New structure typeUnderstanding these relationships is key. It helps us see the “family tree” of the mineral world, showing how different elements can substitute for one another to create an entirely new species with similar properties.

Frequently Asked Questions (FAQs)

1. What is the chemical formula of LAURANIITE?The standard chemical formula for LAURANIITE is Cu6Cd2(SO4)2(OH)12(H2O)2·3H2O. This defines its elemental composition.2. Which crystal system does LAURANIITE belong to?LAURANIITE crystallizes in the Monoclinic system. Its internal symmetry is further classified under the Prismatic class.3. How is LAURANIITE typically found in nature?The “habit” or typical appearance of LAURANIITE is described as As bladed submicro xls.. This refers to the shape the crystals take when they grow without obstruction.
READ ALSO  URAMARSITE Mineral Details
4. In what geological environments does LAURANIITE form?LAURANIITE is typically found in environments described as: . This gives clues to the geological history of the area where it is discovered.5. Are there other minerals related to LAURANIITE?Yes, it is often associated with or related to other minerals such as: New structure type.

External Resources for Further Study

For those looking to dive deeper into the specific mineralogical data of LAURANIITE, we recommend checking high-authority databases:

Final Thoughts

LAURANIITE is more than just a name on a list; it is a testament to the orderly and beautiful laws of nature. With a chemical backbone of Cu6Cd2(SO4)2(OH)12(H2O)2·3H2O and a structure defined by the Monoclinic system, it holds a specific and important place in the study of mineralogy.We hope this overview has helped clarify the essential data points for this specimen. Whether for academic study or personal interest, understanding these properties brings us one step closer to understanding the Earth itself.
Scroll to Top