OLDSITE Mineral Details

Complete mineralogical data for OLDSITE. Chemical Formula: K2Fe2+(UO2)2(SO4)4(H2O)2·6H2O. Crystal System: Orthorhombic. Learn about its geologic occurrence, habit, and identification.

OLDSITE

K2Fe2+(UO2)2(SO4)4(H2O)2·6H2O

Crystal System

Orthorhombic

Crystal Class

Pyramidal

Space Group

Pmn21

Point Group

m m 2

Structure & Data

Crystal Structure

Fe analog of svornostite, structure based upon infinite chains of uranyl-sulfate polyhedra, which comprises pentagonal UO7 bi-∆s sharing 4 of their equatorial vertices with sulfate tetrahedra such that each tetrahedron is linked to 2 uranyl bi-∆s to form infinite chain (free, non-linking equatorial vertex of uranyl bi-∆ is H2O grp).

Cell Data

a=12.893Å, b=8.276Å, c=11.239Å, Z=2

Geology & Identification

Geologic Occurrence

OLDSITEOLDSITE

Habit

As rectangular micro blades

Twinning

Relationships

RELATIONSHIP TO OTHER MINERALS

Fe analog of svornostite

If you are fascinated by the hidden structures of our planet, you have likely come across OLDSITE. This mineral is a compelling subject for study, offering a unique glimpse into the complex chemistry that shapes the Earth’s crust.Whether you are a student identifying a hand sample, a researcher looking for crystallographic data, or a collector curious about a new find, this guide breaks down everything you need to know about OLDSITE. From its precise chemical formula to the geological environments where it thrives, let’s explore what makes this mineral distinct.

The Chemistry Behind the Crystal

Every mineral tells a story through its chemistry. At its core, OLDSITE is defined by the chemical formula K2Fe2+(UO2)2(SO4)4(H2O)2·6H2O.This isn’t just a string of letters and numbers; it represents the precise recipe of elements that nature used to build this specimen. This specific chemical composition is what gives the mineral its stability and dictates how it reacts with acids, heat, or other minerals. It is the fundamental “DNA” that geologists use to classify it within the larger mineral kingdom.

Crystallography: Geometry in Nature

One of the most beautiful aspects of mineralogy is the hidden geometry within every stone. OLDSITE crystallizes in the Orthorhombic system.Think of this as the mineral’s architectural blueprint. It dictates the symmetry and the angles at which the crystal faces grow. Digging deeper into its symmetry, it falls under the Pyramidal.
  • Point Group: m m 2
  • Space Group: Pmn21
READ ALSO  ILESITE Mineral Details
Why does this matter? These crystallographic details are like a fingerprint. They influence optical properties—how light travels through the crystal—and physical traits like how it breaks or cleaves when struck.

Internal Structure and Unit Cell

If we could zoom in to the atomic level, we would see the “Unit Cell”—the smallest repeating box of atoms that builds up the entire crystal. For OLDSITE, the dimensions of this microscopic building block are:
a=12.893Å, b=8.276Å, c=11.239Å, Z=2
The internal arrangement of these atoms is described as:Fe analog of svornostite, structure based upon infinite chains of uranyl-sulfate polyhedra, which comprises pentagonal UO7 bi-∆s sharing 4 of their equatorial vertices with sulfate tetrahedra such that each tetrahedron is linked to 2 uranyl bi-∆s to form infinite chain (free, non-linking equatorial vertex of uranyl bi-∆ is H2O grp).This internal structure is the invisible framework that supports everything we see on the outside, from the mineral’s density to its hardness.

Physical Appearance (Habit)

When you find OLDSITE in the field, what does it actually look like? A mineral’s “habit” describes its typical shape and growth pattern.
  • Common Habit: As rectangular micro blades
  • Twinning: 
Twinning is a fascinating phenomenon where two or more crystals grow interlocked in a specific symmetrical pattern. If OLDSITE exhibits twinning, it can be a dead giveaway for identification, distinguishing it from look-alike minerals.
READ ALSO  FLUORO-NYBØITE Mineral Details

Where is it Found? (Geologic Occurrence)

Minerals are the products of their environment. They don’t just appear anywhere; they need specific conditions—pressure, temperature, and chemical ingredients—to form.Geologic Occurrence:Knowing this context helps geologists reconstruct the history of a rock formation. It tells us whether the rock was born from cooling magma, settled in an ancient ocean, or was transformed by the intense heat and pressure of metamorphism. For more broad geological context, resources like the U.S. Geological Survey (USGS) provide excellent maps and data.

Related Minerals

No mineral exists in a vacuum. OLDSITE is often related to other species, either through similar chemistry or structure.Relationship Data: Fe analog of svornostiteUnderstanding these relationships is key. It helps us see the “family tree” of the mineral world, showing how different elements can substitute for one another to create an entirely new species with similar properties.

Frequently Asked Questions (FAQs)

1. What is the chemical formula of OLDSITE?The standard chemical formula for OLDSITE is K2Fe2+(UO2)2(SO4)4(H2O)2·6H2O. This defines its elemental composition.2. Which crystal system does OLDSITE belong to?OLDSITE crystallizes in the Orthorhombic system. Its internal symmetry is further classified under the Pyramidal class.
READ ALSO  CALCIOLANGBEINITE Mineral Details
3. How is OLDSITE typically found in nature?The “habit” or typical appearance of OLDSITE is described as As rectangular micro blades. This refers to the shape the crystals take when they grow without obstruction.4. In what geological environments does OLDSITE form?OLDSITE is typically found in environments described as: . This gives clues to the geological history of the area where it is discovered.5. Are there other minerals related to OLDSITE?Yes, it is often associated with or related to other minerals such as: Fe analog of svornostite.

External Resources for Further Study

For those looking to dive deeper into the specific mineralogical data of OLDSITE, we recommend checking high-authority databases:

Final Thoughts

OLDSITE is more than just a name on a list; it is a testament to the orderly and beautiful laws of nature. With a chemical backbone of K2Fe2+(UO2)2(SO4)4(H2O)2·6H2O and a structure defined by the Orthorhombic system, it holds a specific and important place in the study of mineralogy.We hope this overview has helped clarify the essential data points for this specimen. Whether for academic study or personal interest, understanding these properties brings us one step closer to understanding the Earth itself.
Scroll to Top