WATERHOUSEITE Mineral Details

Complete mineralogical data for WATERHOUSEITE. Chemical Formula: Mn2+7(PO4)2(OH)8. Crystal System: Monoclinic. Learn about its geologic occurrence, habit, and identification.

WATERHOUSEITE

Mn2+7(PO4)2(OH)8

Crystal System

Monoclinic

Crystal Class

Prismatic

Space Group

P21/c

Point Group

2/m

Structure & Data

Crystal Structure

Complex framework of Mn(O,OH)6 octahedra & PO4 tetrahedra, linked by both edges & corners; 2 diff sub-units: arsenoclasite-type strips of edge-sharing octahedra & finite chains of edge-sharing octahedra; PO4 tetrahedra provide connection btw strips & chains.

Cell Data

a=11.36Å, b=5.57Å, c=10.46Å, ß=96.6o, Z=2

Geology & Identification

Geologic Occurrence

Iron depositWATERHOUSEITEWATERHOUSEITE

Habit

Divergent sprays of bladed crystals

Twinning

Relationships

RELATIONSHIP TO OTHER MINERALS

If you are fascinated by the hidden structures of our planet, you have likely come across WATERHOUSEITE. This mineral is a compelling subject for study, offering a unique glimpse into the complex chemistry that shapes the Earth’s crust.Whether you are a student identifying a hand sample, a researcher looking for crystallographic data, or a collector curious about a new find, this guide breaks down everything you need to know about WATERHOUSEITE. From its precise chemical formula to the geological environments where it thrives, let’s explore what makes this mineral distinct.

The Chemistry Behind the Crystal

Every mineral tells a story through its chemistry. At its core, WATERHOUSEITE is defined by the chemical formula Mn2+7(PO4)2(OH)8.This isn’t just a string of letters and numbers; it represents the precise recipe of elements that nature used to build this specimen. This specific chemical composition is what gives the mineral its stability and dictates how it reacts with acids, heat, or other minerals. It is the fundamental “DNA” that geologists use to classify it within the larger mineral kingdom.

Crystallography: Geometry in Nature

One of the most beautiful aspects of mineralogy is the hidden geometry within every stone. WATERHOUSEITE crystallizes in the Monoclinic system.Think of this as the mineral’s architectural blueprint. It dictates the symmetry and the angles at which the crystal faces grow. Digging deeper into its symmetry, it falls under the Prismatic.
  • Point Group: 2/m
  • Space Group: P21/c
READ ALSO  ECANDREWSITE Mineral Details
Why does this matter? These crystallographic details are like a fingerprint. They influence optical properties—how light travels through the crystal—and physical traits like how it breaks or cleaves when struck.

Internal Structure and Unit Cell

If we could zoom in to the atomic level, we would see the “Unit Cell”—the smallest repeating box of atoms that builds up the entire crystal. For WATERHOUSEITE, the dimensions of this microscopic building block are:
a=11.36Å, b=5.57Å, c=10.46Å, ß=96.6o, Z=2
The internal arrangement of these atoms is described as:Complex framework of Mn(O,OH)6 octahedra & PO4 tetrahedra, linked by both edges & corners; 2 diff sub-units: arsenoclasite-type strips of edge-sharing octahedra & finite chains of edge-sharing octahedra; PO4 tetrahedra provide connection btw strips & chains.This internal structure is the invisible framework that supports everything we see on the outside, from the mineral’s density to its hardness.

Physical Appearance (Habit)

When you find WATERHOUSEITE in the field, what does it actually look like? A mineral’s “habit” describes its typical shape and growth pattern.
  • Common Habit: Divergent sprays of bladed crystals
  • Twinning: 
Twinning is a fascinating phenomenon where two or more crystals grow interlocked in a specific symmetrical pattern. If WATERHOUSEITE exhibits twinning, it can be a dead giveaway for identification, distinguishing it from look-alike minerals.
READ ALSO  SPRINGCREEKITE Mineral Details

Where is it Found? (Geologic Occurrence)

Minerals are the products of their environment. They don’t just appear anywhere; they need specific conditions—pressure, temperature, and chemical ingredients—to form.Geologic Occurrence: Iron depositKnowing this context helps geologists reconstruct the history of a rock formation. It tells us whether the rock was born from cooling magma, settled in an ancient ocean, or was transformed by the intense heat and pressure of metamorphism. For more broad geological context, resources like the U.S. Geological Survey (USGS) provide excellent maps and data.

Related Minerals

No mineral exists in a vacuum. WATERHOUSEITE is often related to other species, either through similar chemistry or structure.Relationship Data:Understanding these relationships is key. It helps us see the “family tree” of the mineral world, showing how different elements can substitute for one another to create an entirely new species with similar properties.

Frequently Asked Questions (FAQs)

1. What is the chemical formula of WATERHOUSEITE?The standard chemical formula for WATERHOUSEITE is Mn2+7(PO4)2(OH)8. This defines its elemental composition.2. Which crystal system does WATERHOUSEITE belong to?WATERHOUSEITE crystallizes in the Monoclinic system. Its internal symmetry is further classified under the Prismatic class.3. How is WATERHOUSEITE typically found in nature?The “habit” or typical appearance of WATERHOUSEITE is described as Divergent sprays of bladed crystals. This refers to the shape the crystals take when they grow without obstruction.
READ ALSO  CAMARONESITE Mineral Details
4. In what geological environments does WATERHOUSEITE form?WATERHOUSEITE is typically found in environments described as: Iron deposit. This gives clues to the geological history of the area where it is discovered.5. Are there other minerals related to WATERHOUSEITE?Yes, it is often associated with or related to other minerals such as: .

External Resources for Further Study

For those looking to dive deeper into the specific mineralogical data of WATERHOUSEITE, we recommend checking high-authority databases:

Final Thoughts

WATERHOUSEITE is more than just a name on a list; it is a testament to the orderly and beautiful laws of nature. With a chemical backbone of Mn2+7(PO4)2(OH)8 and a structure defined by the Monoclinic system, it holds a specific and important place in the study of mineralogy.We hope this overview has helped clarify the essential data points for this specimen. Whether for academic study or personal interest, understanding these properties brings us one step closer to understanding the Earth itself.
Scroll to Top